吕永岩:专家什么情形下才认账转基因并基因编辑危害?
转基因作物的危害是一个比天还大的事实,但是让转基因专家认账这个事实却比登天还难。
那么存不存在让转基因专家认账转基因危害的可能呢?
存在。
让我们先回顾一个历史故事。
故事来自《韩非子》,讲的是有一个楚国人卖矛又卖盾,说盾的时候他夸耀“随便用什么矛都戳不穿”,而说矛的时候,他又称“随便什么盾都戳得穿”。围观的人问:“用你的矛刺你的盾会怎么样”,此人便无言以对了。
这个故事告诉我们:人吹牛的时候很容易露出破绽。
2019年4月23日,《科技日报》发表了一篇《不靠病毒潜入体内“上帝的手术刀”更安全》的文章,这篇文章是吹捧“上帝的手术刀”CRISPR基因编辑技术的。文章称“近日,由来自南京大学、厦门大学和南京工业大学的科研人员,开发出一种‘基因剪刀’工具的新型载体,可实现基因编辑可控。”
仔细推敲这句话,其中一个含义是:在没有开发出这种基因剪刀工具的“新型载体”之前,基因编辑是不“可控”的。
问题的关键还不是这句话。
问题的关键在下面。
为了让读者看得明白,我们不妨先引用《科技日报》文章中的话把“基因剪刀”说清楚。
“目前,科学家们最普遍使用的‘基因剪刀’是一种名为CRISPR-Cas9的外源DNA,它的诞生离不开细菌。病毒为了自身繁衍利用细菌的细胞工具为自己的基因复制服务,细菌在与病毒抗争的过程中,在体内进化出CRISPR系统,能够不露声色地将病毒基因从自己的染色体上切除。”
那么如何把CRISPR-Cas9送到细胞中去呢?
文章说:“这就需要借助到载体的帮助”。
载体有哪些呢?
文章介绍说有5大类:“分别是质粒载体、噬菌体载体、病毒载体、非病毒载体和微环DNA。其中病毒载体是目前最流行的递送方式。”
注意:“质粒”来自细菌。
这里文章说得很清楚,主要是用“病毒”做载体。白纸黑字,板上钉钉。
说到这里,要插一句:知道转基因水稻用什么做载体吗?主流媒体报道过吗?
没有报道吧?
但媒体不报道没关系,网上可以查到。转基因水稻的载体有致癌农杆菌的质粒,有花椰菜病毒的启动子,有终止子,还有一个耐抗生素基因。用这些“载体”把一个能杀死虫子的BT蛋白插入水稻,这个BT蛋白还有一个名字叫苏云金杆菌。
转基因专家巡回报告说“经过严格检验审批的转基因产品是安全的”。言外之意“没经过严格检验的是不安全的”。而人们知道所谓的检测一般大多是“运动员兼裁判员”,并且权威检测机构被揭露检测形同虚设的造假,一时间舆论大哗。这个事实已曝光于天下,想否认也否认不了了。
问题还在于:使用病菌、病毒、还有耐抗生素基因做载体,把能杀虫的农药插到水稻里去,让水稻具有杀虫功能,专家说“安全”的时候,说过这些细节吗?这么一大堆吓人的东西插入水稻让人们天天吃,月月吃,年年吃,这能“安全”?如果真的“安全”,作为国宴首选,请转基因种植大国的政要带头吃一下岂不更有号召力?为啥没这样做呢?
再回到“基因剪刀”的话题。请注意《不靠病毒潜入体内“上帝的手术刀”更安全》文章中的这段话:“研究表明,病毒类载体在CRISPR-Cas9系统中存在着固有缺点,包括致癌风险,插入大小限制以及会在人体内产生免疫反应。例如,逆转录病毒可能造成插入性突变,导致癌症发生,向静脉高剂量注射AAV用于基因治疗也会产生严重毒性”。
看见了吧,专家在这里不打自招了:“致癌风险”、“产生免疫反应”、“造成插入性突变”、“导致癌症发生”、“产生严重毒性”。
这都是专家的原话。网上搜这篇文章能搜出一大堆,截图很容易。铁证如山,想抵赖也抵赖不了。
专家为什么在这里要不打自招呢?
这就该轮到那个“自相矛盾”的故事了——“吹”。
专家认账此前的基因编辑技术存在“致癌”、“突变”、“严重毒性”等多重风险,为的是吹一下新发现的一款“尖端的”“基因剪刀”。专家得意洋洋地说:“更安全的基因编辑载体来了”。
这种新的“基因编辑载体”是一种名叫“‘上转换纳米粒子’的非病毒载体,这种纳米粒子可以被细胞大量内吞,通过一种光敏化合物将CRISPR-Cas9锁定在上转换纳米粒子上。”“这些纳米粒子吸收低能近红外辐射并将其转化为可见的紫外光,能够自动打开纳米粒子和Cas9蛋白之间的‘锁’,使Cas9蛋白进入细胞核,从而实现对靶点基因精准敲除”。这就是新的“可以通过近红外光控制‘修剪’基因的方式”。
我们无意否定这种使用“非病毒载体”的基因编辑比此前使用的“病毒载体”要安全。本文要说明的不是这个。本文要说明的是:转基因专家只有在吹嘘新技术、新发现的时候,才能将转基因或基因编辑的危害情不自禁地说出来。
难道不是吗?
那个卖矛又卖盾的人,总是在复活,总是在表演。因为他要生存,他要挣钱。
转基因专家也要生存,也要挣钱,甚至还要挣摇钱树一般的大钱。
谁敢说某些人靠转基因和吹嘘转基因不能发大财?
附:不靠病毒潜入体内“上帝的手术刀”更安全
张晔/科技日报 2019-04-23
精确定位并切断DNA上的基因位点,关闭某个基因或引入新的基因片段,让失去希望的病人重获治愈的可能……CRISPR基因编辑技术,自问世以来就被誉为“上帝的手术刀”。
但是,这个神奇的“手术刀”居然也有失手的时候,其脱靶效应一直是阻碍其应用的关键障碍之一。
近日,由来自南京大学、厦门大学和南京工业大学的科研人员,开发出一种“基因剪刀”工具的新型载体,可实现基因编辑可控,在癌症等重大疾病治疗方面具有广阔的应用前景。目前,该成果已在新一期美国《科学进展》杂志上发表。
来自病毒载体的担忧
转基因大豆油、抗虫棉花、甚至是免疫艾滋病的基因编辑婴儿……虽然争论不休,但在短短数十年时间里,基因编辑技术作为一个新时代的产物,还是迅速地跟多数普通人建立起联系。但是,说到其中运用的工具和原理,很多人就不太熟悉了。
自上世纪60年代揭示遗传密码的秘密之后,人类对基因的改造尝试就从未停止过。用更形象的说法,基因编辑可以理解为,利用“基因剪刀”将DNA链条断开,对目标DNA片段进行改造的过程,无论是增添还是敲除基因,本质上都是从分子水平改变生物的性状。
目前,科学家们最普遍使用的“基因剪刀”是一种名为CRISPR-Cas9的外源DNA,它的诞生离不开细菌。病毒为了自身繁衍利用细菌的细胞工具为自己的基因复制服务,细菌在与病毒抗争的过程中,在体内进化出CRISPR系统,能够不露声色地将病毒基因从自己的染色体上切除。科学家们正是利用了这一特性,开发出了这款尖端的“基因剪刀”。
如何把CRISPR-Cas9送到细胞中去?这就需要借助到载体的帮助。
根据基因载体来源,我们可以把基因载体分成5大类,分别是质粒载体、噬菌体载体、病毒载体、非病毒载体和微环DNA。其中病毒载体是目前最流行的递送方式,截至2018年6月,临床试验中超过70%的基因药物载体为病毒。将复合物连接到病毒后,病毒侵入靶细胞的细胞核,CRISPR-Cas9这把“基因剪刀”才能发挥出真正的功能。
逆转录病毒、腺病毒和腺相关病毒(AAV),这三大类病毒,已经在提供遗传物质的治疗方面进行了广泛的应用。然而,构建病毒载体是一个艰苦而且高成本的过程,并且运用这些病毒载体递送并不能做到万无一失。“CRISPR-Cas9的优势很明显,劣势也明显。它存在脱靶效应,也可能会切断目标之外的其他区域,对正常的区域进行切除时,就会产生很大的损伤。”南京大学现代工程与应用科学学院教授宋玉君说。
研究表明,病毒类载体在CRISPR-Cas9系统中存在着固有缺点,包括致癌风险,插入大小限制以及会在人体内产生免疫反应。例如,逆转录病毒可能造成插入性突变,导致癌症发生,向静脉高剂量注射AAV用于基因治疗也会产生严重毒性。
更安全的基因编辑载体来了
病毒作为运输载体用于基因工程的安全性还不能完全掌控,因此科学家们提出了几种替代的非病毒递送材料,包括金纳米颗粒、黑磷、金属有机骨架、氧化石墨烯和各种纳米材料。
相比病毒,这些材料在安全性上有了很大的提升。但是,基因编辑的时间和基因编辑的过程,仍然无法为科学家所控制。
发表在《科学进展》杂志上的最新科研成果中,来自南京大学、厦门大学和南京工业大学的科研人员开发出一种“基因剪刀”工具的新型非病毒载体,可以通过近红外光控制“修剪”基因的方式,实现体内时间和空间上的基因编辑可控,在癌症等重大疾病治疗方面具有广阔的应用前景。
针对CRISPR-Cas9的脱靶效应,研发团队经过长达一年半的试验,研发出一种名叫“上转换纳米粒子”的非病毒载体,这种纳米粒子可以被细胞大量内吞,通过一种光敏化合物将CRISPR-Cas9锁定在上转换纳米粒子上。
宋玉君表示:“红外光具有强大的组织穿透性,这为在人体深层组织中安全、精准地应用基因编辑技术提供了可能。”
实验的触发装置就在于两种光——近红外光和紫外光。近红外光和紫外光具有特殊的性质,前者可以穿透人体组织到达目标位置,后者则可以实现切断光敏分子。暴露在近红外光下,这些纳米粒子吸收低能近红外辐射并将其转化为可见的紫外光,能够自动打开纳米粒子和Cas9蛋白之间的“锁”,使Cas9蛋白进入细胞核,从而实现对靶点基因精准敲除,诱发肿瘤细胞凋亡。
该团队从基因、蛋白及细胞等多个角度对该体系的有效性进行了验证,在对荷瘤小鼠进行治疗的过程中团队发现,只有近红外光照射实验组的肿瘤得到了有效抑制,且从20天后取下的肿瘤大小来看,实验组肿瘤远远小于对照组。
该技术为非病毒载体在基因工程上的运用打开了另一扇门。一旦未来这项技术能够实现临床,肿瘤尤其是实体瘤就能实现无创治疗,帕金森症、糖尿病等患者也能从这项技术中受益。
非病毒载体未来无可限量
病毒载体虽然在临床中广泛使用,但其安全不确定性、高昂的制备及运输费用制约着其在基因工程中的推广前进。因此,非病毒载体越来越引起研究者的注意。
“目前,各种纳米材料的非病毒载体都有科研人员在做,比如可降解的生物高分子材料,它的前景是非常大的。”宋玉君告诉记者。
关于非病毒载体的研究有两个方向,一个是有机材料基因递送体系,另一个是无极材料基因递送体系。在有机材料研究领域中,脂质体、聚乙烯亚胺及其衍生物、阳离子多肽、树形分子及其衍生物、壳聚糖及其衍生物、聚氨基酯、环糊精及其衍生物为科学家研究的主要方向。
各类脂质体设计的非病毒脂质纳米粒子易于制备,免疫反应不剧烈,而且有更大的有效荷载,因此已经在临床中被广泛运用,如疫苗和基因药物递送、癌症治疗、肿瘤影像学等都会使用这种递质。以聚乙烯亚胺及其衍生物为载体的递送系统也已经运用在多重疾病的临床试验中,包括卵巢癌、胰腺癌、原发性腹膜恶性肿瘤、多发性骨髓瘤等。而其他的递质材料的研究基本没有进入临床阶段。
相比于有机材料,无机材料则更容易人为控制,它的尺寸可调,表面也容易修饰。金纳米粒、碳纳米管、石墨烯、上转换纳米粒等材料均有广泛研究,主流的递送方式包括将负电基因与正电无机纳米粒形成复合物、将基因以响应性共价键形式连接在纳米粒上或者在无机纳米粒表面修饰两亲性高分子,负电荷基因通过静电作用吸附在高分子层中。宋玉君所在团队研发的光操纵基因编辑新技术还是第一次。
目前,无机递送材料的研究还停留在实验室阶段,临床阶段的试验尚未批准,关于它对机体的影响还没有确切的定论。
“无机纳米粒子含有人体非必须的元素,因此可能会产生一些副作用。我们在实验时,对小鼠层面观察时间比较短,少至几周多则几个月,在细胞层面和动物层面还没有发现大的影响。如果能够找到合适、安全、具有相同功能的无机材料,它的前景将会无可限量。”宋玉君对非病毒载体的未来充满信心。
(同内容标题:中国科学家优化基因编辑技术:不靠病毒载体减少脱靶效应)